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The unsteady spreading of a thin layer of an incompressible viscous liquid over an impermeable curved surface, which occurs 
under the action of the grawity force, is considered. The solution of the boundary-value problem which arises reduces to solving 
a Cauchy problem for equations with a small number of independent variables. © 1998 Elsevier Science Ltd. All fights reserved. 

1. The motion of the liquid is most conveniently considered in a special curvilinear orthogonal system 
of coordinates. The surface over which the liquid spreads is chosen as the initial coordinate surface. 
The y coordinate will be measured from it along the normal to it. On the initial coordinate surface, 
wherey = 0, we will introduce curvilinear coordinates x, z such that the curvesx = const and z = const 
form an orthogonal grid. At the point with coordinates x0, z0 this surface will define radii of curvature 
R.(xo, Zo) and R~(xo, Zo) of the coordinate lines z = z0 and x = x0, respectively [1]. The centres of normal 
curvature of these coordinate lines lie on the normal to the surface of inclination, and hence R. and 
Rz are the values of the y coordinate for the corresponding centre of curvature. 

Note that in order to use such a system of coordinates one needs to assume in addition that any of 
the centres of normal curvature lie outside the layer considered. Hence, when introducing the system 
of coordinates it is assumed that the layer is thin. 

We will denote the Lam6 coefficients for the coordinate lines y = const, z = const; x = const, z = 
const; and x = const by l~, ly and l~, respectively. In the case considered, they will be represented by the 
formulae 

Ix= l+  Y , /y=l ,  lz = I + - - Y  (1.1) 
Rx(x,z) R (x,z) 

We will denote the unit vectors of the coordinate trihedron at the point considered for the chosen 
system of coordinates by Ox, Oy, oz, the components of the velocity vector v by u, v, w, the components 
of the stress tensor by ,t,=, ~ ,  tzz, txy, tyz, t=, and the components of the unit vector of the acceleration 
due to gravity by % yy, y.. Note that the parameters y., yy, y. must be regarded as known functions of 
the coordinates x, y, z. For the chosen system of coordinates the position of the coordinate trihedron 
does not change along the coordinate line x = const, z = const (i.e. along the normal to the surface of 
inclination), and hence the parameters y~, 7y, Yz are independent of the y coordinate; in addition ~x + 
ya, + y2z = 1. 

Using the well-known formulae and equations for orthogonal curvilinear coordinates, the equa- 
tions of motion of an :incompressible liquid in the chosen system of coordinates can be written as 
follows: 

the equation of continuity 

~---x( lylzu ) + ~-y ( lzl~ ) + ~z ( lxlyw) = O (1.2) 

the equations of the change in angular momentum in projections on the directions of the unit vectors 
ox, oy and oz 

( 3u u ~u v ~u w 3u uv ~l x uw ~l x v2 3l r w2 ~/z]= 

P - - + - - - - + l , . ~ y  I z OZ lxl v 3y tflz ~z lily ~x. lxl z Ox) ~ ~t lx Ox , - - + - - - -  + . - - 4  
(1.3) 
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-- g p v ,  + 
a 

+ 

l i l t  z ~ Ox " " 

• "1 
• . = J  

+t z -~y t~. +1 v " - 1  r ( x y z , u u w )  

(only the first of these is presented, since the remaining two can be obtained by cyclic permutation of 
the notation x, y, z and u, v, w). Here t is the time and p is the density of the liquid. 

The components of the strain rate tensor in a curvilinear orthogonal system of coordinates can be 
represented by the formulae 

U .  °x l.l, az ) 

e ~  = ly ~y l x I x ~x  l r 

(1.4) 

(the unwritten equations are obtained by cyclic permutation). 
We will consider the case when the stress tensors and the strain rate tensors are related by the linear 

equation 

ti~ + l ~  =ile ik  ( i , k =  x , y , z )  (1.5) 

Here 

! {1, i = k  

p=--~(lxx+lyy+/~,), ~ik= O, i * k  

and Ix is the constant coefficient of the liquid viscosity. 
Equations (1.2), (1.3) and (1.5), taking (1.4) into account, form a closed system of non-linear partial 

differential equations. Its solution must satisfy the boundary conditions on the surface over which the 
flow occurs and on the free surface of the liquid. We will give them in orthogonal curvilinear coordinates. 
On the surface over which the flow occurs the following obvious condition must be satisfied: 

y=O:  u = O  

In some cases we can assume (following Stokes) the no-slip condition 

(1.6) 

y = O: u = O, w = 0 (1.7) 

But a case may arise when the slip condition must be specified on the surface over which the flow 
occurs. We will denote the shear stress vector on the surface over which flow occurs by ts, and the normal 
pressurepn bypn = -tyy, ts = ~/(t2xy + t2 ) .  One of the possible assumptions is the one made by Newton, 
that the shear stress on the surface is proportional to the rate of spread of the liquid on it 

y = O: ts = pc.v (1.8) 

Here c. is a material constant representing the spreading of the medium over the surface. Condition 
(1.8) is equivalent to the two scalar conditions 

y = O: pc.u = txv, pc.w = t.v z (1.9) 

In some other cases the nature of the interaction between the moving medium and the surface requires 
us to assume a constant shear stress on it [2] 

2 2 = x.2 (1.10) y=O: txy + tzy 



Unsteady spreading of a thin layer of viscous liquid over a curved surface 147 

Here x. is a specified physical constant. In the case of spatial motion it is natural to assume that 

w w2 (1.11) y=O: t~..=X, u ,  to .=X. - - ,  q=~u2 + 
q q 

On the free surface of the liquid y = h(x, z, t) the kinematic condition 

ah u ah w ah 
y=h(x,z , t ) :  ~ t  =v l x ax l z az (1.12) 

is specified. This equation, together with the initial condition 

t = O: h(x, z, 0)= h(°)(x, z) (1.13) 

also serves to define the free surface. 
Henceforth, we will use the notation ul, ~1 and wl to denote the components of the velocity vector 

of particles on the free surface. 
The boundary conditions on the free surface reduce to the following: the shear stresses on it vanish, 

while the normal stress is equal to the atmospheric pressure Pa with opposite sign 

y = h(x,z,t): t u = tsy =tsz = 0, t n = - -Pa  

Here t n is the value of the vector tn of the normal stress on the free surface, and tsx, tsy and t~z are the 
components of the vector t s of the shear stresses on the free surface. 

We will denote the total stress vector on the free surface by t, with components t x, t., and tz, and the 
unit vector of the nonnal to the free surface by n, with the components nx, ny and nz. ~Ve have 

tsx = t  x - - t n n x ,  tsy " = t y - - t n n y ,  tsz = t  z - - tnr i  z 

The boundary conditions for the stresses on the free surface can be represented in the form 

y=h(x,z , t ) :  (tx~ + Pa)nx +t~o.ny +txznz=O (xyz) (1.14) 

(two further conditions are obtained by cyclic permutation of the subscripts). 
Equation (1.12) can be converted to a form in which it is used in practice for the numerical solution 

of the problem of the motion of the medium. To do this we integrate the equation of continuity (1.2) 
overy from 0 to h(x, z, t) and we obtain 

v a(lxW)~y 
t lxlz ~o~ ax az ) '  

Since 

h a(l u) a h ah 

0 o x  Ox  0 o x  

we can represent Eq. (1.12) in the form 

(xz, uw) 

ah 1 ( a u  aw~ 
= - z k l x  l - ]  ~ + "~z ] ] (1.15) a t  

( h ! )  
U(x,z,t)  = ~lzudy, W(x,z, t)  = lxwdy 

o 

The solution of the problem must also satisfy the initial conditions, which can be represented in the 
form 

t=O: h=h(°)(x,z),  u=u(°)(x,z),  w=w(°)(x ,z)  (1.16) 
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where h(°)(x, z), u(°)(x, z), w(°)(x, z) are specified functions. 

2. The system of equations (1.2)-(1.5) is extremely difficult to solve in general form. But when the 
thickness of the spreading layer is small compared with its extent on the surface, the curvature of which 
has no very sharp changes (the functions h(x, z, t), Rx(x, z )  and R~(x, z)  must be continuous and piecewise- 
smooth), the equations of motion of the liquid can be greatly simplified, and this enables us to advance 
considerably when solving the problem. A certain analogy with boundary-layer theory occurs here for 
the high-speed flow of a viscous liquid around a surface but in the case considered the thickness of the 
layer is finite and is determined quite accurately when solving the problem. 

To investigate the possibility of the above simplifications, we will change in Eqs (1.2)-(1.5) and 
boundary conditions (1.6)-(1.14) to dimensionless variables using the formulae 

x = L.~, z = L.~, y = h.~, u = u.~,  u =u dY, w = u .W 

t = L ' ' t  ", Rx=L.91(~ , ; )  , R z = L . p 3 ( ~ , ~ )  
u. 

+h,  rl ,  
l x = l l = l  /v =/1 = 1, l z=13=l+  -~ -~ -  

h ,  

• L ,  P3 

ho(x,z) = h.ho(~,~),  h(x ,z , t )  = h,g(~,~,%) (2.1) 

p = pgh.w, Pa = pgh*-ffa, txx = pgh*xll, tyy = pgh.x22, tzz = 9gh.'c33 

txy = pgh*xt2, tx z = pgh.xl 3, ty z = pgh.x23, s = pgh.tJ 

C 1 )2 >2 + ( ~ +  X33>2 + 2(%122 +,r23 +,r23 >))~ (~---- "2 (~1] + 'I;11 + (~/+'g22 

Here L. is the characteristic scale of the dimensions of the layer along the surface, h. is its characteristic 
thickness, and u. and a). are the characteristic values for the components of the velocity tangential and 
normal to the surface for the flow considered, respectively. 

The quantities L*, h., ~t are known quantities from the formulation of the problem, while the quantities 
u. and ~). are unknown in advance, and there is some arbitrariness in choosing them. We will consider 
flows for which the parameter 8 = h . / L .  can be assumed to be a small quantity compared with 
unity. 

The simplifications, connected with the thinness of the spreading layer, essentially consist of the fact 
that in the equations, represented in dimensionless form, we will neglect terms which vanish as e ---> 0. 

The Lam6 parameters can be represented in the form 

l x = l  I = 1 + 8  71 , I z = l  3 = 1 + 8  1]--~-, l y = l  2=1 
Pl P3 

Apart from quantities 0(82), we have the equations 

l 0 0 

etc. 
Since a) = 0 when y = 0, we can conclude from a consideration of the equation of continuity (1.2) 

that we must take ~). = e.u.. The equation of continuity itself, in dimensionless form, if we neglect terms 
O(8), reduces to the form 

(2.2) 

The components of the deformation rate tensor, apart from terms 0(8) 2 , can be reduced to the 
form 
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^ u, Off" O0" O~ 
exx : ze~ , - .~ - ,  eyy=2eu~ O1]' e= = 2 e ~ -  0~ 

exy = -'~ t ' ~  - ~" --~i J ' ezY = -'~ ~"-~ - ~" ~3 )' e'z = ~'~'t"~" + ~ ' J  

Representing (1.5) in dimensionless variables, we obtain 

17n = - V  + AE;'tlI, 171722 = - ¥  + Ag't22, 1733 = - ¥  + Ae"~33 

171712 = A'~I2, 1723 = A'~23, 1713 = gA'~I3 (2.3) 

"ell = 2 -~,  "C22 = 2---~, 1733 = 2 --~ ,A - pgt~ ) 

Using (2.3), apart from quantities O(e), the system of equations (1.3) can be represented in the form 

( ~  _o~- _o~ w~)_V,(~,~)_A~_r=O F + u -~ +u ~ + - O~ O: '~ 

- _ o ~  _ o ~  ~ . . ~ (  ~ 2  F +u-~+u ---~+ - T3(~,~)- =0  (2.4) 

F ( ~ 2  ~ 2  

Pt P3 

For a thin layer, apart from quantities O(e), we have o = ~/(1712 + ~23). 
We will transform the boundary conditions. Assuming that the direction cosines of the normal to the 

free surface, apart from terms O(E2), can be represented in the form 

0~ 0~ 
v , = l ,  

and bearing (2.3) in mind, boundary conditions (1.14) on the free surface can be written in the following 
form in dimensionless variables with the same accuracy 

= = V-A  +17,2  +17 3 

"CI2--E(~ a - ¥ ) - ~ = O ,  1723 -- E(Pa -- ~ / ) ~  ---- 0 

It follows from these equations that, apart from quantities O(e) 

~--h(~,~,17): '~i2=1723 =0,  YmPa  (2.5) 

We will write condition (1.12) in dimensionless form, apart from quantities O(e) 

"q = h(~,~,17): 0" -" -~- + u-@ + w ~ (2.6) 

Equation (1.15) can be represented in the following form in dimensionless variables with the same 
accuracy 
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0K D0 aW ~ 
-~-+--~-+--~- '= O, U'= oI~drl' W =/~dqo (2.7/ 

No difficulties arise in writing the boundary conditions (1.6)-(1.10) on the surface in dimensionless 
form. 

The equations obtained by taking the limit as e ~ 0 form a system of equations of a "thin" layer, 
which also serves as the object of our further consideration. The dimensionless parameters F and A 
may have different values depending on the particular features of the problem considered. 

The case when A = 1 and F ,~ 1 corresponds to slow ("creep") flows and has been investigated fairly 
fully. The equations which have been obtained can be used, for example, to construct a theory of a 
lubricating layer [3, 4], to describe the motion of isothermal glaciers [5] and landslides. 

The case when F -- 1 is the most common, where the smallness of the parameter A, even if occurs, 
does not lead to any further simplifications of the equations obtained, since in these equations it serves 
as the coefficient of the higher derivatives of the unknown functions. 

We will now return to the initial notation of the variables and constant parameters of the problem. 
The system of simplified equations can then be represented in the form 

~u ~u +~w =0 

3u ~u ~u ~u ~2u 
 +WTz = o 

Ow Ow Ow Ow O2w 
F U--~X +I) = o 

u 2 w 2 
- - +  +g ' t v (X ,Z) -~=O 
RI e,3 " 

(2.8) 

Here v = ~ p  is the kinematic coefficient of viscosity. 
The boundary conditions on the free surface can be written in the form 

Oh Oh Oh 
y=h(x,z,t): txy. =tyz =O, v =~-~+U-~x + W-~z , P= Pa (2.9) 

Equation (1.15) can be represented in the form 

Oh ~U OW h h 
-~t +-~x +-~z =O, U= Iudy, W= Jwdy (2.10) 

0 0 

The form of the boundary conditions (1.6)-(1.10) on the surface and the initial conditions (1.16) do 
not contain any changes. It is more convenient to represent the boundary conditions on the surface in 
the following form, using Newton's hypothesis 

y=O: u =0, u = l~y ,  w=l  l= v 

Note that the system of four equations (2.8) obtained and boundary conditions (2.9) and (1.6)-(1.10) 
splits into a closed system of the first three equations of (2.8) and boundao, conditions (2.9), excluding 
the last one, condition (1.16) and one of the conditions (1.7), (1.9) or (1.11), and the last of Eqs (2.8) 
with the last of boundary conditions (2.9), the solution of which can be constructed after the solution 
of the system, distinguished by italics, has been obtained. 

Henceforth, to obtain the equations we will consider the case corresponding to the plane problem, 
when the dependent variables are independent of the z coordinate and their number is reduced due 
to the fact that the quantities w and tyz identically vanish. However, this limitation is unimportant, since 
the main results obtained for the plane problem can be extended without particular difficulty to the 
three-dimensional case. 
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3. For the plane problem the spreading equations can be represented in the form 

Ou 0u Ou 0u 0u 02u 
~x +-~-y :°, ~ ~= Oy2 +U~xx +v gct(x)+v (3.1) 

Here (z(x) is a specified function, which is defined by the angle between the surface over which the flow 
occurs and the horizontal plane. 

To solve system (3.1) the physical and kinematic boundary conditions on the free surface and on the 
surface around which !flows occurs--the limits of the flow, must be satisfied. We will henceforth arrange 
to distinguish the values of the flow parameters at points of its boundaries using subscripts: a one on 
the free surface and a zero on the surface over which flow occurs. The boundary conditions on the free 
surface will then be written in the form 

) Oh Oh 
~Y'ylOU = 0, u I = ~'t + ui ~x (3.2) 

The boundary conditions on the surface over which the flow occurs will be represented in the form, 
using Newton's hypothesis 

vo=O, Uo tOY)o ~-, 

(l is a physical constant with the dimension of length). 
Using the no-slip condition, the boundary conditions have the form 

u0 = 0, u0 = 0 (3.4) 

Assuming the shear stress on the surface over which flow occurs is constant, the boundary condition 
will have the form 

 0:0 < . ,  
0 

Below we give a detailed description of a method of constructing solutions of these equations, the 
basic ideas of which were outlined earlier [6], and also presented at the conference "Modern Problems 
of Mathematics and Mechanics", devoted to 175 years of P. L. Chebyshev (Moscow State University, 
14-19 May 1996); the content of this paper was published in [7]. 

Integrating Eqs (3.1). over the layer thickness, we obtain integral conditions which the required solution 
must satisfy 

Oh OU OU hga(x)___~_x _ V 
¥+-ffx =°' W =  o 

U=Iudy, UI= u2dy 
0 

(3.6) 

Multiplying the first equation of (3.1) by u and integrating over the y coordinate within the limits 
[0, hi, we obtain another integral condition 

OUI=2gOL(x)U ~U2 2vl'l-2VUo (~--~-u) (3.7) 
0t 0x ~.0y Jo 

U2=!u3dy, i"i--Ot~y J j 
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We will seek a solution of system (3.1) by representing the longitudinal velocity u(t, x, y) in the form 
of a sum 

u = b~, (t, x)g~, (11) + av (t, x)f~, (11) (3.8) 

(summation is carried out over the subscript y, y = 0, 1 . . . . .  N; N > 2). Here 

Y a o = U O, al a2 aN 
~= h' ~,~Y )o' (,~Y2 )o ..... - (,ayN )o 

-h('"] b2:h2(  u) "( :" '  
b o = u  l ,  b I - t OY) l '  _ 1 ... . .  b,v = h t -~-"~ ) l  

gi(~) and)~0q) (i = 0, 1, 2 , . . . ,  N) are specified functions of the sole variable ~, which satisfy the following 
conditions on the edges of the region 0 < y < h(t, x) 

fi , i=gi,i=l; f / ,k=gi ,k=O (k~:i), ~i,k=Ti,k=O (O<~i,k<~N) (3.9) 

We have used the following notation here 

f/,k = f/(k)(O), (Pi,k = f/(k)(1) (f/,o = f/(O), (Pi.O ---- f i ( 1 ) )  

gi,k = g~k)(1), 'Yl,k = g[~)(O) (gl,o = gi(1), ?Lo = gl(O)) 

(note that (Ou/Oy)l = 0, (O3U/()y)l , a n d  hence we can take gl(rl) ---- 0, g3 ( I ] )  ---- 0 ) .  
When the boundary condition on the surface over which flow occurs is specified in the form (3.3) or 

(3.5) (the first case), the following conditions are assumed to be satisfied 

Ao=~fo(rl~'q=O , a I =~go( r l )d~=O 
0 0 

for the functions f0(rl) and g0(ri) (the notation A = O(1/2) denotes that, for A which satisfies the 
conditions 0 < A < 1, the relation A ~ 1 is untrue), and when it is specified in the form (3.4) (the 
second case), the following conditions are assumed to be satisfied 

Ao = 5J~ (rl)drl = 0 , Ai=Sgo(~)drl=O 
o 0 

for the functionsfl(rl) and go(rl) (note that ao - O, and hence we can putfo --- 0 in this case). 
We also require that the following conditions must be satisfied for the functions fi(rl) and gi(rl) 

(i > 1) 

1 1 
S I f,. (~)ldrl,~ 1, ~lgi(~)ldq,~l (3.10) 
o 0 

in the first of these cases, and the conditions 

1 1 

SIf/+l(rl)ldrl "~1, 51gi(rl)ldrl'~l (3.11) 
0 o 

in the second of these cases (in terms of [7], the corresponding functions ~(~) and gi(rl) form a set of 
functions of small filling). 

It can be shown that for functions which satisfy conditions (3.9), conditions (3.10) or (3.11) will be 
satisfied automatically for sufficiently high values of the parameter N. 

Consider the first case. 
The functionals U{t, x}, Ul{t, x}, U2{t , x} and f~l{t, x} cart be represented with high accuracy in the 

following form (we ignore integrals of functions of small filling) 
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U = h(Aou o + AlU 1 ) 

U 1 = h(Aoo u2 + 2A01u0u t + a 1 lUl 2) 

U 2 = h(AoooU3o + 3AoolU2oUl + 3Ao,,Uo u2 + Air lUl 3) 

a = (B0ou0 2 + 2Bo UoU, + 

(3.12) 

Here 

h h 
A 0 = I fo (TI )d r l ,  AI = Sgo(TI)dlrl 

o o 

1 1 I 

Aoo = Ifo2(n)dq, Ao, = Ifo(rl)go(rl)drl, Atl = Ig2(n)drl 
0 0 0 

1 I 

Aoo o = I fo3(n)drl, Aoo, = I fo2(n)go(n)dq 
0 0 

1 I 

Aol , = lfo(~)go2(rl)dq, AI,, = Ig3(rl)a~ 
0 0 

! I I 

BOO = ~ ( f ~ ( n ) ) 2 d l ~ ,  BO, = I f ~ ( n ) g ; ( n ) d ~ ,  Bll = I ( g ; ( n ) ) 2 d l ~  
o 0 0 

Using (3.12), we cart represent Eqs (3.6) and (3.7) in the form 

Oh OU Oh OU Ou o OU Ou t 
Ot Oh Ox Ou 0 Ox Ou I Ox 

OU 0~0 + 0U 0u I --'~o 
Ou o Ot Ou t Ot ~x 1- .'~o ~ T.-o ~ + gho~(x)- v ~y o 

Here 

(3.13) 

%o = 0 U o U  0UI s~ 0 = 0 U O U  0UI 3UOU 0U I 
0h 0h 0h ' 0uo' = 0h Out 

~t =0UIOU 0U2 s~ t=0UI 0U 0U2 ~ l =  0UIOU 0U 2 
0h 0h 0h ' 0h 0u o 0u o ' 0h Ou t 0u I 

Equations (3.13) (taking into account the fact that in the case considered either (Ou/~y)o = uoll or 
(Ou/~)o = co.) form a system which is dosed with respect to the unknown functions h(t, x), uo(t, x), 
ul(t,x). Here the last two equations of (3.13) can always be solved for the derivatives OuO/& and Oul/~. 
This system is of the hyperbolic type, but the directions t = const are not characteristic directions for 
it (it is curious that for the initial system (3.1), which is of the parabolic type, the directions t = const 
are characteristic directions), and hence the initial conditions 

t=O: h=hf°)(x),  UofU(°)(x), ut=u(°)(x) (3.14) 

where h(°)(x), u(°)(x) are; specified functions, form a Cauchy problem for this system, methods of solving 
which are well developed. 

When the functions h(t, x), Uo(t, x), Ul(t, x) have been obtained, Eqs (3.1) enable one, taking the 
boundary conditions into account, to determine (i~u/i~)o, (i~u/i~i)l for i > 1, and formula (3.8) then 
gives the required solution of the problem. 
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The following question arises: to what extent is the solution of system (3.1), for which the longitudinal 
velocity u(t, x, y) is represented by the sum (3.5), exact? 

Note that for representation (3.5), Eqs (3.1) are satisfied with multiplicity N - 1 on the free surface 
and on the surface over which flow occurs. It is obvious that the accuracy of the solution will increase 
as N increases. This observation cannot, of course, serve as a satisfactory answer to the question, but 
the method considered contains the constructive possibility for solving it. 

When the boundary condition on the surface over which flow occurs is specified in the form (3.5), 
the integral conditions (3.6) and (3.7) can be represented in the form 

Oh ~U ~ t  OUI (3u )  3 U I -  aU2-2vf~ -~  + -~x = O, = hga(x) - -~x - v -~y o' -~t - 2got(x)U - Ox (3.15) 

while the functionals can be represented in the form (3.12), except that we must replace u0 by al in 
(3.12), and when calculating the coefficients A0, Aoo, A01, Aoo0, Aool, AoH, Boo, B01 the function f0(rl) 
must be replaced byfl01). 

To determine the unknown functions h(t,x), a l(t, x), ul(t,x) a system of equations arises which differs 
from (3.13) by the global replacement of u0 by al, replacement of the last term on the fight-hand side 
of the second equation by-val/h and the absence of the last term on the fight-hand of the third equation. 

The initial conditions can be represented in the form 

t = O: h = h(°)(x), a I = h{°)(xRo(°)(x), u r = u[°)(x.) 

This research was supported by the International Science Foundation (M8M300) as was partially 
supported by the Russian Foundation for Basic Research (96-01-01074). 
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